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Abstract— In the past, deep learning (DL) technologies have
been widely used in hyperspectral image (HSI) classification
tasks. Among them, convolutional neural networks (CNNs) use
fixed-size receptive field (RF) to obtain spectral and spatial
features of HSIs, showing great feature extraction capabilities,
which are one of the most popular DL frameworks. However,
the convolution using local extraction and global parameter
sharing mechanism pays more attention to spatial content infor-
mation, which changes the spectral sequence information in the
learned features. In addition, CNN is difficult to describe the
long-distance correlation between HSI pixels and bands. To solve
these problems, a spectral–spatial fusion Transformer network
(S2FTNet) is proposed for the classification of HSIs. Specifically,
S2FTNet adopts the Transformer framework to build a spatial
Transformer module (SpaFormer) and a spectral Transformer
module (SpeFormer) to capture image spatial and spectral long-
distance dependencies. In addition, an adaptive spectral–spatial
fusion mechanism (AS2FM) is proposed to effectively fuse the
obtained advanced high-level semantic features. Finally, a large
number of experiments were carried out on four datasets, Indian
Pines, Pavia, Salinas, and WHU-Hi-LongKou, which verified
that the proposed S2FTNet can provide better classification
performance than other the state-of-the-art networks.

Index Terms— Deep learning (DL), fusion, hyperspectral image
(HSI), long-distance dependence.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are captured by air-
borne imaging spectrometer and carry a lot of spectral

and spatial information. In recent years, HSIs have played
an important role in many fields, including health care [1],
military [2], Earth exploration [3], and environmental pro-
tection [4]. Among them, HSI classification is an important
stage of HSI processing and is one of the hot spots of image
research. Specifically, HSI classification is to classify images
pixel by pixel by learning prior knowledge [5], [6], [7].

In the early stage of research, classification methods
paid more attention to the spectral feature extraction of
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images, and many classical methods appeared, such as support
vector machines (SVMs) [8], principal component analysis
(PCA) [9], and composite kernels [10]. Although the above
traditional methods can obtain the basic features of the image,
the classification performance is not satisfactory. In addi-
tion, these methods have many disadvantages, for example,
too much dependence on knowledge in professional fields,
low generalization ability, and weak representation ability of
acquired features. Therefore, deep learning (DL) technology
is becoming more and more popular in computer vision tasks
(such as classification [11], [12], [13], detection [14], [15],
and segmentation [16]) because it can not only get rid of
the constraints of manual but also adaptively learn high-level
semantic information.

In recent years, many excellent frameworks have emerged
for DL technology, including convolutional neural networks
(CNNs) [17], generative adversarial networks (GANs) [18],
[19], recurrent neural networks (RNNs) [20], [21], graph
convolutional networks (GCNs) [22], [23], capsule network
(CapsNet) [24], and vision Transformer (ViT) [25].

Among them, CNNs are one of the most popular DL
methods, which improve the discriminative ability of features
through local connection and global parameter sharing mecha-
nism. Unlike other ordinary images, HSI contains rich spectral
and spatial features, and the construction of CNN network can
easily extract these two features of HSI. Hu et al. [26] used
1-D CNN to classify HSI pixel by pixel and verified that 1-D
CNN is suitable for HSI classification tasks. In addition, the
image has rich spatial information. In order to integrate the
spatial information of the image, Zhao and Du [27] proposed
2-D CNN, which uses the adjacent pixels around the central
classification pixel as training samples to perform classifica-
tion tasks, improving the classification performance. However,
only using 2-D CNN is not enough to extract spectral–spatial
(SS) joint features of images. Therefore, Hamida et al. [28]
cut the HSI into multiple 3-D cubes and constructed the
3-D CNN to extract the SS joint features of the image,
verifying that the method can effectively improve the clas-
sification performance. Similarly, Roy et al. [29] designed an
SS hybrid network based on 3-D CNN and 2-D CNN and
proved its effectiveness. Shang et al. [30] proposed a clas-
sification method based on multiscale cross-branch response
and second-order channel attention (MCRSCA), which con-
siders the inherent spatial structure information of ground
objects and avoids the loss of spatial details. With the gradual
increase in 3-D CNN network depth, gradient disappearance
and gradient explosion will occur [31], and the classifi-
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cation accuracy will gradually decrease. In order to solve
this problem, Zhong et al. [32] introduced the ResNet [11]
structure into the designed spatial 3-D CNN module and
spectral 3-D CNN module and extracted rich spatial and
spectral features. In addition, Paoletti et al. [33] proposed a
depth pyramid residual network for SS HSI classification by
making better use of the potential of available information
on each unit. In order to further improve the classification
performance and alleviate the problem of overfitting, atten-
tion mechanism has been widely concerned and successfully
applied in the HSI classification [34], [35], [36], [37]. For
example, He et al. [38] proposed a dual global–local atten-
tion network (DGLANet). In order to reduce the spatial
and spectral redundancy information of pixels, Mei et al. [39]
proposed a network based on bidirectional long short-term
memory (Bi-LSTM), which designed an SS attention mech-
anism and emphasized effective information. In addition,
lightweight classification methods based on CNN are also pop-
ular. For example, a lightweight network [40] is constructed
by using 3-D depthwise convolution, which reduces model
parameters and computational overhead. Meng et al. [41]
proposed a lightweight SS convolution module (LS2CM)
as an alternative to the convolution layer. Kang et al. [42]
proposed an SS classification framework based on edge
preserving filtering (EPF). Zhong et al. [43] designed an
iterative EPF (IEPF) method based on EPF and further
improved the classification performance. In addition, they
embedded an iterative strategy into SS classifiers and designed
a new HSI classification method that combines multiple SS
classifiers [44].

In the past, Transformer has received extensive attention in
the field of natural language processing (NLP). It is worth
noting that Transformer has recently been introduced into
computer vision and successfully applied to image classifi-
cation tasks [25]. Since the spectrum of HSIs is sequence data
and usually contains hundreds of wavebands, He et al. [45]
proposed a spatial–spectral Transformer (SST) network by
combining transfer learning with the Transformer framework
and proved that the Transformer can construct the correlation
of spectral sequences. Similarly, Hong et al. [46] reconsid-
ered Transformer from the perspective of spectral sequence
attributes, proposed a spectral Transformer (SpeFormer)
network, and confirmed that it has more significant advan-
tages than classical ViT and advanced backbone networks.
In general, CNN-based network access to high-level seman-
tic features is relatively limited. Therefore, Sun et al. [47]
proposed an SS feature tokenization Transformer (SSFTT) net-
work to capture SS features and advanced semantic features.
Similarly, Zhong et al. [48] proposed a new SS Transformer
network (SSTN) to overcome the weak ability of CNNs to
learn long-distance dependencies. Huang et al. [49] proposed
a new 3-D swin Transformer-based hierarchical contrastive
learning (3DSwinT-HCL) method based on 3-D swin Trans-
former. This method uses Transformer to effectively make up
the shortcomings of CNNs lack of receptive field (RF) and
inability to capture the order attribute of data. In order to solve
the problem that the network is easily interfered by irrelevant
information around the target pixel in the training phase, which

leads to inaccurate feature extraction, Bai et al. [50] pro-
posed an HSI classification method based on the multibranch
attention Transformer network. Zou et al. [51] proposed the
local-enhanced SS Transformer (LESSForm) method, which
alleviates the problem that Transformer-based classification
methods usually generate inaccurate tag embedding from a
single spectral or spatial dimension of the original HSI.
Inspired by the bottleneck Transformer of computer vision,
Song et al. [52] proposed a bottleneck spatial–spectral Trans-
former (BS2T) network, which uses Transformer to make the
extracted features more spatial location aware and spectral
aware. Mei et al. [53] proposed a group-aware hierarchical
Transformer (GAHT) to solve the problem of overdispersion
of features extracted by multihead self-attention (MHSA) in
the Transformer.

Although the above DL methods have been widely used in
the HSI classification, there are still some challenges. On the
one hand, CNNs using the mechanism of local extraction and
global parameter sharing pay more attention to spatial content
information, thus distorting the spectrum sequence information
in the learning features [51]. On the other hand, CNNs are
difficult to describe the long-distance correlation between HSI
pixels and bands. On the contrary, Transformer can not only
effectively extract long-distance dependence but well maintain
spectral sequence information. Therefore, this article proposed
an HSI classification method based on spectral–spatial fusion
Transformer network (S2FTNet). In particular, S2FTNet uses
the Transformer framework to build the spatial Transformer
(SpaFormer) module and SpeFormer module to capture the
long-distance dependencies in image spatial and spectral.
In addition, an adaptive spectral–spatial fusion mechanism
(AS2FM) is proposed to effectively combine the obtained SS
high-level semantic features.

The main contributions of this article are given as follows.
1) In order to enhance the long-distance dependency of fea-

tures and improve the representation ability of features,
a Transformer block based on multihead double self-
attention (MHD-SA) is proposed. Then, three improved
Transformer blocks are constructed in parallel as a
SpaFormer module to extract the long-distance depen-
dence of images with different spatial dimensions.

2) In order to increase the RF of spectral extraction and
learn more spectral sequence information, a SpeFormer
module is designed. It uses convolution to replace the
traditional Transformer’s multilayer perceptron (MLP)
and combines it with the proposed MHD-SA.

3) Considering the different importance of high-level
semantic features extracted by spatial branches and spec-
tral branches, in order to combine them more effectively,
an AS2FM is proposed.

4) Based on Transformer and CNN, we proposed an
S2FTNet, which uses a dual-branch structure to extract
spectral and spatial features and combines the features
obtained from the two branches with an adaptive fusion
mechanism. Extensive experiments have proved that our
method has a better performance and potential compared
with some state-of-the-art CNN-based and Transformer
networks.
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The rest of this article is arranged as follows. In Section II,
the network structure of S2FTNet proposed in this article is
introduced in detail. In Section III, the parameter analysis of
the model, quantitative analysis of comparative experiments,
and visual evaluation are provided. Section IV gives the
conclusion and prospect of this article.

II. METHODOLOGY

The method S2FTNet proposed in this article includes
three main modules: SpaFormer, SpeFormer, and AS2FM.
The overall network framework is shown in Fig. 1. Suppose
that input HSI data are X ∈ RH×W×L , where W and H
represent the width and height of the image, respectively,
L represents the number of bands of the image, and the
corresponding label set Yi ∈ {1, 2, . . . , Class}. In order to
facilitate feature extraction, X is first processed by an edge-
filling strategy. Then, the new data obtained after filling are
extracted in two ways. One is to extract the adjacent edge
blocks of the pixel with the pixel to be classified as the
center and reduce the spectral dimension by PCA to obtain
data X_patch ∈ Rs×s×b. The other is pixel-by-pixel extraction
(PPE) to obtain data X_pixel ∈ R1×1×L , where s×s represents
the image space size after segmentation and b represents the
number of spectral bands after PCA dimensionality reduction.
Next, the two processed data are used as the input data
of SpaFormer and SpeFormer modules, and the advanced
semantic features extracted by the two modules are fused
through an adaptive fuse mechanism. Finally, the fused feature
vectors are transferred to the classifier for classification.

Then, the three main modules of S2FTNet proposed in this
article are introduced in detail.

A. SpaFormer Module

In recent years, CNNs are one of the most classical DL
frameworks and are widely used in HSI classification tasks.
Convolution (Conv) of CNN uses a mechanism of local
connection and global parameter sharing so that more attention
is paid to the local features of the image during the feature
extraction process. In contrast to Conv, Transformer can build
long-distance dependencies, making up the shortcomings of
Conv in feature extraction. Therefore, the SpaFormer uses
the above two frameworks for modeling, and the structure is
shown in Fig. 1. Next, this section will introduce the proposed
SpaFormer module in detail.

First, the input image data X_patch passes through
two Conv blocks, namely, 3-D convolution (Conv3D) and
2-D convolution (Conv2D), and each Conv block contains
the convolution layer, the batch normalization (BN) layer,
and the nonlinear activation layer. Specifically, X_patch
extracts the SS joint information of the image through
Conv3D, and the calculation process is

F3-D = f
(
δ1
(

X_patch2w3-D
+ b3-D)). (1)

In Formula (1), w3-D represents the weight offset of 3-D
Conv, b3-D represents the offset term, and F3-D represents
the output of Conv3D. 2 is a 3-D Conv operator, δ1 is a
3-D BN operation, and f (·) is a nonlinear activation function

ReLU. In order to further extract image spatial information,
the module introduces Conv2D after Conv3D. The calculation
principle of Conv2D is similar to that of Conv3D, and the
formula is

F2-D = f
(
δ2
(

F3-D ⊙ w2-D
+ b2-D)). (2)

In Formula (2), w2-D represents the weight offset of 2-D
Conv, F2-D represents the offset term, and b2-D represents the
output of Conv2D. ⊙ is a 2-D Conv operator, and δ2 is a 2-D
BN operation. The module first extracts the SS joint and spatial
features of the image by designing Conv3D and Conv2D,
which provided complete shallow information for extracting
high-level semantic features.

Then, three improved Transformer blocks are used for
parallel connection to build the SpaFormer module, which
is used to explore the long-distance dependency of images.
As can be seen from Fig. 1, each Transformer block contains
multiple components, including position embedding (PE), two
layers of normalization (Norm), MHD-SA, and MLP.

To strengthen the correlation between positions, the Trans-
former block first introduced PE. To put it simply, all tokens
T = [T1, T2, . . . , Tw] are connected to the learnable classifica-
tion token T0, and the location information PEpos is attached
to all tokens, i.e.,

TPE = [T0, T1, T2, . . . , Tw] + PEpos. (3)

The proposed MHD-SA is the most important component of
the entire Transformer, and its structure is shown in Fig. 2(a).
At the same time, for the convenience of illustration, the
single-head structure of MHD-SA is shown in Fig. 2(b). MHD-
SA usually contains three feature inputs, namely, query (Q),
key (K ), and value (V ), and Q, K , and V are obtained by
linear mapping of three predefined weight matrices WQ , WK ,
and WV . The self-attention score of single-headed double self-
attention (DSA) is calculated by Q and K , and then, the score
is weighted into V , i.e.,

SA = soft max
(

QK T

√
dK

)
V (4)

DSA = soft max

(
L Q(SA)L K (SA)√

dL K

)
LV (SA). (5)

In (4) and (5), SA represents the self-attention value; L Q(·),
L K (·), and LV (·) represent the features obtained by SA
through linear mapping; and dK and dL K represent the feature
dimensions of K and L K , respectively. Generally, Transformer
contains multiple-head self-attention, so the MHD-SA can be
represented as

MHD-SA = Concat(DSA1, DSA2, . . . , DSAh)W (6)

where Concat(·) represents the cascade function, h represents
the number of headers, and W represents the weight parameter.

Finally, MLP is introduced after MHD-SA to alleviate the
problem of gradient explosion and gradient disappearance.
The MLP structure contains two full connection layers, and
a Gaussian error linear unit (GELU) is embedded between the
two full connection layers.
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Fig. 1. S2FTNet overall network framework.

Fig. 2. Overall structure of MHD-SA. (a) Multihead structure. (b) Single-head structure.

It is worth noting that SpaFormer contains three improved
Transformer blocks. Although the three Transformer blocks
have the same structure, the input data are different. It can
be seen from Fig. 1 that the space size s × s of the input
data of the three blocks performs pooling = false, pooling =

2, and pooling = 4 operations, and the output space size
is [s/pooling] × [s/pooling], while [·] represents the upper
rounding symbol. With different space sizes, Transformer
blocks can be used to explore long-distance dependen-

cies of different spaces, which can enrich the diversity of
features.

To sum up, the spatial branch contains two Conv blocks and
SpaFormer modules. First, the SS joint and spatial features of
the shallow layer are extracted through two Conv blocks to
provide complete shallow information. Then, three improved
Transformer blocks are paralleled, and different input space
sizes are used to explore the long-distance dependency of
features, which enriches the diversity of features.
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Fig. 3. Overall structure of SpeFormer.

B. SpeFormer Module

HSI not only has rich spatial information but also contains
hundreds of spectral bands. Extracting rich spectral features
of images and taking full account of spectral sequence can
improve the discrimination ability of features and classification
performance. Therefore, inspired by [47], this article proposed
a SpeFormer module. The overall structure is shown in Fig. 3.

It can be seen that the input data size is R1×1×L and L
is the number of spectral bands of HSI. First, the input is
dimensionally reduced by linear mapping and cascaded with
learnable token T ′

0 . Then, the results are embedded in position,
and the obtained feature tensor T ′

PE contains position and
spectral order information. The calculation process is similar
to the SpaFormer, i.e.,

T ′

PE =
[
T ′

0, T ′

1, T ′

2, . . . , T ′

w

]
+ PE′

pos. (7)

Then, a Transformer block based on Conv is intro-
duced, which fully considers the correlation between spectral
sequences and can obtain the long-distance dependence
between spectral sequences. The traditional MLP of Trans-
former includes two fully connected (FC) layers. Although
the two layers of FC can extract spectral nonlinear features to
a certain extent, it still lacks consideration of local spectral
correlation. According to [54], the linear transformation at
different positions in two FCs of the Transformer block is
the same, but they use different parameters from one layer to
another, which can be replaced by two 1 × 1 Conv. Therefore,
in order to further explore the local spectral correlation and
increase the convolution RF, SpeFormer uses two 3 × 3 Conv
blocks (including a Conv layer and a BN layer) to replace
FC in the traditional MLP block. This improved method can
effectively increase the RF of spectral information extraction
while avoiding the destruction of spectral order. Therefore, the
improved Transformer block includes two-layer normalization,
an MHD-SA, two Conv blocks, and a GELU. This process can
be expressed as

SpeFormer = δ2( f2(g(δ1( f1(MHD-SA))))). (8)

In Formula (8), f (·) represents the Conv function, δ(·)

represents the BN function, and SpeFormer represents the
output result of improved Transformer block.

C. Adaptive Spectral–Spatial Fusion Mechanism

In this article, the proposed S2FTNet selects cross entropy as
the loss function and optimizes the network through backprop-
agation where the expression of cross-entropy loss function is

Loss =
1
C

r∑
a=1

[
−y′

a log(ya) −
(
1 − y′

a

)
log(1 − ya)

]
. (9)

In Formula (9), y′
a and ya represent real object labels and

model prediction labels, respectively, C represents the total
number of categories in the dataset, and Loss represents the
average loss value of each mini-batch.

S2FTNet includes two branches, SpaFormer branch and
SpeFormer branch. Then, the high-level semantic features
obtained from these two branches will be combined and sent
to the classifier. In this section, we will introduce in detail
how to effectively combine the features extracted from these
two branches. Usually, two features are cascaded as follows:

F = Concat
(

FSpa, FSpe
)
. (10)

However, considering that the two important degrees of
the features extracted from the two branches are different,
we introduce the balance factor λ for score weighting, i.e.,

F = Concat
(
λ FSpa,

(
1 − λ

)
FSpe

)
. (11)

In the backpropagation process, the balance factor update
can be expressed as

λ = λ0 − η
∂

∂λ
Loss (12)

where λ0 is the random initial value of the balance factor and η

is the learning rate. By adaptively determining the proportion
of these two parts, the model has a stronger data representation
ability than feature-weighted addition.

D. Algorithm Implementation Process

In this section, we give the implementation process of the
proposed network S2FTNet, as shown in Table I. Take the
Pavia dataset as an example, that is, input data X1 ∈ R13×13×30.
X performs edge filling and cuts and extracts cube by pixel,
respectively, to obtain processed data X1 ∈ R13×13×30 and
X2 ∈ R1×1×103. In the SpaFormer branch, first, select X1 as the
input data, and execute Conv3D and Conv2D. Among them,
Conv3D and Conv2D, respectively, select eight convolution
kernels with a size of 7 × 7 × 7 and 64 convolution kernels
with a size of 7 × 7. Then, pooling = false, pooling = 2,
and pooling = 4 operations are performed on the input image
data space size s × s. The space of the three images is
13 × 13, 7 × 7, and 4 × 4. Then, in order to adapt to
the improved Transformer blocks, they are reshaped and used
as the input of three blocks. In the SpeFormer branch, first,
select X2 as the input data to reduce the complexity, and select
dim = 64 to linearly map the spectral dimensions of the data.
Then, the linear mapping result is executed into a position
embedded and improved Transformer block. It is worth noting
that the advanced semantics extracted from the two branches
are adaptively weighted by introducing the balance factor λ .
Finally, the Softmax function is used for classification.
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TABLE I

IMPLEMENTATION PROCESS OF S2FTNET

III. EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the effectiveness of the proposed method,
a series of experiments is conducted. The experiments include
network ablation experiments, parameter optimization, quan-
titative comparison, and visualization of classification results.

A. Dataset Description

In this article, three classical datasets and a newer dataset
are selected for all experiments, Indian Pines, Pavia, Salinas,
and WHU-Hi-LongKou datasets. Next, in this section, we will
detail the category information of each dataset and the number
of training samples for the proposed method; the specific
information is shown in Table II.

1) Indian Pines Dataset: It was captured by airborne
imaging spectrometer airborne visible infrared imaging spec-
trometer (AVIRIS) from an Indian Pine tree in Indiana in
1992. Among them, there are 16 land cover categories, mainly
including corn, grass, soybean, and woods. The space size
of the image is 145 × 145, the spatial resolution is about
20 m, and the imaging wavelength range is 0.4–2.5 µm. It also
contains 220 continuous spectral bands. In addition to the
104–108, 150–163, and 220 absorption bands, the remaining
200 bands were used for experiments.

2) Pavia Dataset: It was captured by the airborne imag-
ing spectrometer ROSIS-03 over the University Pavia, Italy,

in 2003. The space size of the image is 610 × 340, with a
spatial resolution of 1.3 m and 115 continuous spectral bands.
Similarly, because individual bands cannot be reflected by
water, there are only 103 bands left. Compared with the Indian
Pines dataset, Pavia contains fewer land cover categories,
including trees, asphalt roads, bricks, and meadows.

3) Salinas Dataset: It was captured by the imaging spec-
trometer AVIRIS over Salinas Valley, CA, USA. The space
size is a total of 111 104 pixels. In addition to background
pixels, pixels remain for classification tasks. These pixels
contain a total of 16 categories, including fallow and celery.

4) WHU-Hi-LongKou Dataset: It is collected from
Longkou Town, Hubei Province, China, by the 8-mm focus
(HNH) imaging sensor carried on the DJI Matrix 600 Pro
(DJI M600 Pro) unmanned aerial vehicle (UAV) platform.
The space size is 550 × 400, the spatial resolution is about
0.463 m, the wavelength range is 0.4–1 µm, and 270 spectral
bands are included. The number of land cover categories
included in the WHU-Hi-LongKou dataset is the same as that
in the Pavia dataset, which is a simple crop scenario. The main
categories include water, broad leaf soybean, corn, rice, and
cotton.

B. Experimental Setup

All experiments in this section are implemented on the
platform of Intel1 Core2 i9-9900K CPU, NVIDIA GeForce
RTX 2080Ti GPU, and 128-GB random access memory, and
the language framework is Python. In addition, in order to
better evaluate the classification performance of the model,
we choose three common evaluation indicators: overall accu-
racy (OA), average accuracy (AA), and Kappa coefficient.
Among them, OA represents the ratio of the number of
accurately classified samples to the total number of samples,
AA represents the average of the classification accuracy of
each category, and Kappa is a measure of robustness.

The network constructed by combining CNN and Trans-
former is more inclined to spatial information of global
context. In order to analyze the impact of different input space
sizes s on the final classification performance, we selected 7–
15 input space sizes for experiments on four datasets. The
adjacent space size interval is 2. The experimental results are
shown in Fig. 4. It can be seen from Fig. 4 that the Indian Pines
dataset is highly sensitive to different input space sizes. The
classification accuracy OA of Pavia and WHU-Hi-LongKou
datasets shows a trend of increasing first and then decreasing.
For the Salinas dataset, with the increase in input space size
s, OA increases first and then tends to be stable. It is worth
noting that when s = 13, the four datasets have achieved the
highest OA. Therefore, s = 13 is selected as the input space
size of the proposed network.

In addition, different learning rates and batch sizes have
a greater impact on the performance of the model. In order
to explore the optimal learning rate and batch size of the
proposed network, some relevant experiments were carried out,
and the experimental results are shown in Fig. 5. Fig. 5(a)–(d)
shows the results of experiments on Indian Pines, Pavia,

1Registered trademark.
2Trademarked.
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TABLE II
DETAILED CATEGORY INFORMATION OF FOUR DATASETS

Fig. 4. Impact of different input space sizes on OA.

Salinas, and WHU-Hi-LongKou datasets, respectively. Among
them, different contour colors represent different ranges of OA
values, and red and blue represent a gradual decrease in OA
values. It can be found that the OA value of the same dataset
is more sensitive to different learning rates and batch sizes
of the model. Especially for the Indian Pines and WHU-Hi-
LongKou datasets, due to the small number of training data
samples used in the training process, the learning rate has a
significant impact on them.

Specifically, for the Indian Pines dataset, as shown in
Fig. 5(a), the optimal learning rate and batch size are 5e−4 and
64, respectively. For the Pavia dataset, as shown in Fig. 5(b),

Fig. 5. Effect of different learning rates and batch sizes on performance
accuracy OA. (a) Experimental results on Indian Pines dataset. (b) Experi-
mental results on Pavia dataset. (c) Experimental results on Salinas dataset.
(d) Experimental results on WHU-Hi-LongKou dataset.

when the batch size is 64 or 128, the learning rate has little
impact on the performance of OA. Similarly, for the Salinas
dataset, as shown in Fig. 5(c), when the learning rate is large
and the batch size is large, better OA values can often be
obtained. For the WHU-Hi-LongKou dataset, as shown in
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Fig. 5(d), when the batch size is 64, the selected learning rate
can achieve better classification results. Therefore, through the
parameter experiment of the model, it can be found that the
best learning rate and batch size of the classification network
proposed in this article are 5e−3 and 64, respectively.

C. Ablation Experiments

In the proposed method, the network mainly includes four
parts, Conv2D&3D, SpaFormer, SpeFormer, and AS2FM.
In order to better verify the impact of each part on the
classification performance OA value. We conducted ablation
experiments on them in four datasets, and the experimental
results are shown in Table III. Among them, “

√
” indicates that

the module is available, and “-” indicates that the module is not
used. There are five cases in total. It can be seen from Table III
that Case 1 only includes Conv2D and Conv3D, and the OA
value obtained is low. In Cases 2 and 3, SpaFormer and Spe-
Former are added based on Conv2D&Conv3D, respectively.
It can be found that the accuracy of OA is worth improving
greatly. Generally, the features extracted from the two branches
will be combined in a cascade (Cat) manner, as in Case 4.
In order to better combine these two features, we introduce
a balance factor to fuse the features obtained from the two
branches. The experiment shows that the OA value of Case 5 is
higher than that of Case 4 on the four datasets, which fully
proved the effectiveness of this adaptive combination method.

In addition, we also conducted experiments on the impact
of different b of PCA (b = 30, b = 60, and b = 90) on
classification performance. The experimental results are shown
in Fig. 6, and Fig. 6(a)–(c) shows the impact of different b
values on the OA (%), running time (s), and parameter (k).
From Fig. 6(a), it can be seen that different b values have little
impact on the Salinas dataset, and they slowly decrease as b
increases in the other three datasets. We infer that this is due
to the dimensionality disaster caused by the high-dimensional
characteristics of HSIs and the inclusion of redundant features,
which leads to a small reduction in classification accuracy.
As shown in Fig. 6(b) and (c), it can be seen that with
the increase in b, the running time and parameter increase
exponentially. Therefore, in our proposed method, we choose
b = 30 as the optimal dimensionality reduction parameter for
PCA.

D. Analysis of Experimental Results

In order to verify the superiority of the proposed classifica-
tion network, we have selected a classifier [iterative support
vector machine (ISVM)] [44] and a variety of state-of-the-
art networks based on CNN and Transformer, including 2-D
CNN [27], 3-D CNN [28], Hybrid-SN [29], PyResNet [33],
LiteDepthwiseNet [40], MCRSCA [30], ViT [25], SF [46],
SSFTT [47], SSTN [48], and GAHT [53].

1) Quantitative Analysis: The classification accuracy of
OA, AA, Kappa, and each category of all methods on the
four datasets is shown in Tables IV–VII. The best classification
results are in bold. As can be seen from the Tables IV–VII,
CNN-based methods have achieved relatively good classifi-
cation results due to their strong ability to extract context
features. However, due to the limited advanced global features

obtained by CNN, it is easy to fall into the performance
bottleneck. In addition, although Transformer-based methods
show great potential by building long-distance dependencies,
the classification performance of networks built only using
Transformer frameworks is not satisfactory, such as ViT and
SF. However, the classification network constructed by com-
bining CNN and Transformer framework has achieved good
classification results, such as SSFTT, SSTN, GAHT, and the
proposed method. It is worth noting that ISVM based on
classifier design has also obtained competitive classification
results.

In general, the classification accuracy of the proposed classi-
fication method is better than that of other comparison methods
on the four datasets. This result not only benefits from the
proposed method S2FTNet, which combines the advantages
of CNN and Transformer, but also benefits from the effective
fusion of the extracted SS high-level semantic features. More
specifically, compared with the best CNN method among the
comparison methods (MCRSCA), the OA value of S2FTNet
is 0.38%, 0.39%, 2.78%, and 1.04% higher on the Indian
Pines, Pavia, Salinas, and WHU-Hi-LongKou datasets, respec-
tively. Compared with the best Transformer method in the
comparison method (SSFTT), the OA value of S2FTNet is
1.07%, 0.23%, 0.39%, and 0.40% higher on the Indian Pines,
Pavia, Salinas, and WHU-Hi-LongKou datasets, respectively.
Compared with ISVM classifiers, the OA values of S2FTNet
on four datasets are 0.90%, 3.36%, 0.03%, and 0.42% higher.
It is worth noting that our method achieves 100% accuracy for
individual categories in some datasets, for example, category 1
(Alfalfa), category 3 (Corn-mintill), category 7 (Grass pace
moved), category 8 (Hay windowed), and category 9 (Oats)
on the Indian Pines dataset; category 5 (Painted metal sheets),
category 6 (Bare Soil), and category 7 (Bitumen) on Pavia
dataset; and category 1 (Brocool-green-weeds_1), category 7
(Celery), category 10 (Corn-senced-green-weeds), category 11
(Lettuce-remaine-4wk), category 12 (Lettuce-remaine-5wk),
and category 13 (Lettuce-remaine-6wk) on the Salinas dataset.

2) Visual Evaluation: Figs. 7–10 show the classification
results of all methods on four datasets. It can be clearly
seen that the visual effect of the proposed method is closer
to the real ground object map. On the Indian Pines dataset,
the CNN-based classification method has a poor classification
effect on edge categories, while the classification method
combining CNN and Transformer has better classification
results than CNN, which also benefits from more abundant
features extracted, including global and local features. The
Pavia dataset contains fewer bands, and the distribution of
buildings is more complex. The proposed S2FTNet method
has less noise in the classification result map, while most
of the comparison methods have more classification errors in
the category “Meadows.” For the Salinas dataset, two cate-
gories that are easy to observe, Vinyard untrained and Grapes
untrained, our method has the best visual effect, followed
by SSFTT. Among them, 2-D CNN, 3-D CNN, ViT, and
SF in the comparison method have serious misclassification.
For the WHU-Hi-LongKou dataset, the images mainly include
crops with similar spectra. Our method combines CNN and
Transformer to build a spatial and spectral extraction module,
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TABLE III
IMPACT OF DIFFERENT MODULES ON NETWORK OA VALUE (%)

Fig. 6. Comparison of different b values of PCA. (a) Impact of different b values on OA. (b) Impact of different b values on running time. (c) Impact of
different b values on parameter.

TABLE IV
CLASSIFICATION ACCURACY OF OA, AA, KAPPA, AND VARIOUS CATEGORIES OF ALL METHODS ON THE INDIAN PINES DATASET. THE BEST

CLASSIFICATION RESULTS ARE IN BOLD

which fused spectral information and spatial information well.
The obtained classification result has a better edge effect and
less intraclass noise.

In order to more clearly illustrate the effectiveness of the
proposed S2FTNet method, we compared T-SNE visualization
of features obtained by various methods (including 3-D CNN,
Hybrid-SN, and SSTN) on four datasets. The experimental
results are shown in Figs. 11–14. Different colors represent
labels of different categories. From left to right, they are the
category distribution results of methods 3-D CNN, Hybrid-SN,
SSTN, and proposed. More specifically, on the Indian Pines
dataset, both 3-D CNN and SSTN methods have serious label

mixing. Although Hybrid-SN has obtained a better intraclass
distance than 3-D CNN and SSTN, the interclass distance is
still not satisfactory. However, our method has a more obvious
cluster, showing better intraclass and interclass distance. For
the Pavia dataset, 3-D CNN and SSTN methods performed
poorly, and category 2 (yellow), category 4 (gray), and cat-
egory 9 (yellow) were still seriously mixed. Compared with
the Indian Pines dataset, Hybrid-SN performs better. However,
our approach is still significantly better. For the Salinas dataset,
the category distribution of 3-D CNN, SSTN, and Hybrid-SN
is mostly in a strip shape, with a large gap in the distance
within the category. However, most of the categories of our
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TABLE V
CLASSIFICATION ACCURACY OF OA, AA, KAPPA, AND VARIOUS CATEGORIES OF ALL METHODS ON THE PAVIA DATASET. THE BEST CLASSIFICATION

RESULTS ARE IN BOLD

TABLE VI
CLASSIFICATION ACCURACY OF OA, AA, KAPPA, AND VARIOUS CATEGORIES OF ALL METHODS ON THE SALINAS DATASET. THE BEST CLASSIFICATION

RESULTS ARE IN BOLD

TABLE VII
CLASSIFICATION ACCURACY OF OA, AA, KAPPA, AND VARIOUS CATEGORIES OF ALL METHODS ON THE WHU-HI-LONGKOU DATASET. THE BEST

CLASSIFICATION RESULTS ARE IN BOLD

methods are clustered and have large intraclass distances. Due
to the large number of sample categories in the WHU-Hi-
LongKou dataset, its category distribution visualization effect

is relatively full, but it is not difficult to see that there are some
mixed categories in 3-D CNN, SSTN, and Hybrid-SN, and the
category distribution is relatively scattered. On the contrary,
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Fig. 7. Classification visualization maps of all methods on the Indian Pines dataset. (a) Real ground feature map. (b)–(n) Classification map of ISVM, 2-D
CNN, 3-D CNN, Hybrid-SN, PyResNet, LiteDepthwiseNet, MCRSCA, ViT, SF, SSFTT, SSTN, GAHT, and proposed, respectively.

Fig. 8. Classification visualization maps of all methods on the Pavia dataset. (a) Real ground feature map. (b)–(n) Classification map of ISVM, 2-D CNN,
3-D CNN, Hybrid-SN, PyResNet, LiteDepthwiseNet, MCRSCA, ViT, SF, SSFTT, SSTN, GAHT, and proposed, respectively.

our method obtains that the features of the same category are
more clustered, and the distribution of different categories is
more dispersed. In general, the proposed method S2FTNet has
better interclass distance and minimized intraclass distance and
plays an important role in capturing the relationship between
HSI classification samples.

3) Model Hyperparametric Analysis: In the designed
network, considering the different importance of features
extracted from spatial and spectral branches and their different
contributions to the final classification results, we introduced
a balance factor λ into the network and weighted the two

branches by fractions. It will be updated gradually with the
change in loss value during the training. In order to observe
the changes of balance factor λ and loss value, we selected
two datasets for the experiment, Indian Pines and WHU-
Hi-LongKou datasets. The experimental results are shown in
Fig. 15(a) and (b). The red dot represents the balance factor λ

value, and the blue dot represents the loss value. The abscissa
represents the training epoch. The left and right ordinates have
different magnitudes. The left ordinate is the loss value, and
the right ordinate is the balance factor value. It can be found
that, on the one hand, the training epoch of the two datasets is
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Fig. 9. Classification visualization maps of all methods on the Salinas dataset. (a) Real ground feature map. (b)–(n) Classification map of ISVM, 2-D CNN,
3-D CNN, Hybrid-SN, PyResNet, LiteDepthwiseNet, MCRSCA, ViT, SF, SSFTT, SSTN, GAHT, and proposed, respectively.

Fig. 10. Classification visualization maps of all methods on the WHU-Hi-LongKou dataset. (a) Real ground feature map. (b)–(n) Classification map of
ISVM, 2-D CNN, 3-D CNN, Hybrid-SN, PyResNet, LiteDepthwiseNet, MCRSCA, ViT, SF, SSFTT, SSTN, GAHT, and proposed, respectively.

about 40, and the loss value is close to 0, which shows that the
combination of these two branch features can achieve faster
convergence. On the other hand, the balance factor λ updated
slowly and tends to be stable with the increase in epoch, and
the stable value is about 0.590. The above results show that the
features extracted by the SpaFormer branch and the SpeFormer
branch are different in importance, and the SpaFormer branch

accounts for a larger proportion than the SpeFormer branch,
and the SS features obtained are more abundant. Finally, the
classification performance can be effectively improved by the
adaptive fusion of these two features. For the Indian Pines and
WHU-Hi-LongKou datasets, the former has many categories,
while the latter has a large spatial resolution. The long-distance
spectral and spatial features extracted by the SpaFormer branch
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Fig. 11. T-SNE visualization of different methods on the Indian Pines dataset. (a) 3-D CNN. (b) Hybrid-SN. (c) SSTN. (d) Proposed.

Fig. 12. T-SNE visualization of different methods on the Pavia dataset. (a) 3-D CNN. (b) Hybrid-SN. (c) SSTN. (d) Proposed.

Fig. 13. T-SNE visualization of different methods on the Salinas dataset. (a) 3-D CNN. (b) Hybrid-SN. (c) SSTN. (d) Proposed.

Fig. 14. T-SNE visualization of different methods on the WHU-Hi-LongKou dataset. (a) 3-D CNN. (b) Hybrid-SN. (c) SSTN. (d) Proposed.

TABLE VIII

COMPARISON OF CLASSIFICATION OA (%) RESULTS OF S2FTNET COM-
BINED WITH DIFFERENT CLASSIFIERS

contribute greatly to the classification results of the two
datasets.

4) Combining Different Classifiers: In this section,
we select two spatial and spectral classifiers, EPF and IEPF,
and combine our method with these two classifiers for exper-

iments. The experimental results are shown in Table VIII.
From the results, we can see that the method with the lowest
classification accuracy OA value is EPF. IEPF has improved
EPF and greatly improved the classification accuracy. In addi-
tion, our method combines EPF and IEPF classifiers, and
it can be found that compared to EPF, the classification
accuracy of S2FTNet_EPF has been improved on all four
datasets. Similarly, compared to IEPF, S2FTNet_IEPF can also
effectively improve the classification performance. This shows
that our proposed method can effectively extract spatial and
spectral features.

5) Model Efficiency Analysis: In order to evaluate the
running efficiency of the proposed methods, this article con-
ducts running efficiency test experiments for all methods, and
Table IX shows the results of the experiments. As can be
seen from Table IX, compared with the method SSFTT, which
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Fig. 15. Changes of balance factor λ and loss value on different datasets. (a) Indian Pines dataset. (b) WHU-Hi-LongKou dataset.

TABLE IX
COMPARISON OF RUNNING TIME OF ALL METHODS ON FOUR DATASETS

Fig. 16. Comparison of different training sample percentages. (a) Pavia dataset. (b) Salinas.

requires the shortest training time and test time, the training
time and test time required for the method S2FTNet proposed
in this article are slightly longer. This is because the proposed
method is a two-branch Transformer structure. Compared with
other Transformer-based methods, S2FTNet generally requires
less running time. In addition, compared with the CNN-based
method, the Transformer-based method requires much less
training time and testing time. In general, the efficiency of
Transformer-based method is significantly higher than that
of CNN-based method. Compared with other methods, the
running time of the proposed S2FTNet is relatively close to

that of the optimal method. The experiment fully shows that
S2FTNet not only has good classification accuracy but also
has satisfactory operation efficiency.

6) Comparison of Different Training Sample Percentages:
The percentage of training samples plays a decisive role in
the HSI classification. However, the lack of labeled samples
limits the training of the model. Therefore, it is necessary
to verify the effectiveness of the method under small training
samples. In this article, we selected 0.5%, 1%, 5%, and 10% of
Pavia and Salinas datasets for experiments. The experimental
results are shown in Fig. 16. The abscissa represents the
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percentage of training samples, and the ordinate represents
the OA value. It can be seen that our method has obtained
the best results under different training sample percentages.
In addition, the suboptimal methods for Pavia and Salinas
datasets are LiteDepthwiseNet and SSFTT, respectively. It is
worth noting that our method has an OA value exceeding
95% on both datasets at a 0.5% sample percentage. Through
small sample experiments, we verify that the proposed method
can also achieve better classification accuracy under limited
training samples.

IV. CONCLUSION

In this article, we proposed an S2FTNet method, which fully
considers the spectral sequence and long-distance dependence
of HSI data. Different from the traditional CNN-based meth-
ods, the proposed method combines CNN and Transformer
frameworks, making up the disadvantage that CNN is difficult
to describe HSI long-distance correlation. Specifically, the
proposed S2FTNet includes two branches, SpaFormer branch
and SpeFormer branch. Among them, the SpaFormer branch
adopts CNN and the improved Transformer block to establish
the long-distance dependence of spectral and spatial, which
enriches the SS features. The SpeFormer branch adopts the
method of preserving spectral sequence, combined with the
improved MHD-SA and Conv, to explore the long-distance
dependence between different spectral bands. Due to the
different importance of the extracted features, in order to
balance the high-level semantic features extracted from the
two branches, this article also proposed an AS2FM. Finally,
in order to verify the advantages of the proposed method, three
classical datasets and a new dataset are chosen and a series of
experiments is carried out, which verified the effectiveness of
the proposed method.

In the future, we will further explore the HSI classification
method based on Transformer and extract more representative
semantic features through a small number of labeled samples
to reduce the demand of the model on the number of training
samples.
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